Categories
Analog Electronics Digital Electronics Interview

A Talk With An EDA Consultant

As more circuits get pushed into SoC (Systems on a Chip), the software that designs them becomes more and more important. Well, it’s been important for a while now. Important enough to be a multi-billion dollar industry. Biiiiig money.

Harry Gries is an EDA consultant with over 20 years in the electronics industry in various roles. He now consults for different companies and also writes a blog about his experience called “Harry…The ASIC Guy”. I love hearing about the different pieces of the electronics food chain and Harry was nice enough to take some time to talk to me about his work. Let’s see what he had to say…

CG: Could you please explain your educational and professional background and how you got to where you are today?

Harry The ASIC Guy (HTAG): My education began when I was raised by wolves in the Northern Territory of Manitoba. That prepared me well for a stint at MIT and USC, after which I was abducted by aliens for a fortnight. I then spent 7 years as a digital designer at TRW, 14 years at Synopsys as an AE, consultant, consulting and program manager. Synopsys and I parted ways and I have been doing independent consulting for 3 years now. A good friend of mine tricked me into writing a blog, so now I’m stuck doing that as well.

CG: What are some of the large changes you see from industry to industry? How does company culture vary from sector to sector?

HTAG: Let’s start with EDA, which did not really exist when the aliens dropped me off in 1985. There were a few companies who did polygon pushing tools and workstations and circuit complexity was in the 1000s of gates. Most large semiconductor companies had their own fabs and their own tools. Gate arrays and standard cell design was just getting started, but you had to use the vendor’s tools. Now, of course, almost all design tools are made by “EDA companies”.

As far as the differences between industries and sectors, I’m not sure that is such a big difference culturally. The company culture is set from the top. If you have Aart DeGeus as your founder, then you have a very technology focused culture. If you have Gerry Hsu (former Avant! CEO), then you have a culture of “win at all costs”.

CG: How hard was it for you to jump from being a designer to being in EDA? What kinds of skills would someone looking to get into the industry need?

HTAG: The biggest difference is clearly the “soft skills” of how to deal with people, especially customers, and understanding the sales process. For me it was a pretty easy transition because I had some aptitude and I really had a passion for evangelizing the technology and helping others. If someone wanted to make that change, they would benefit from training and practice on communicating effectively, dealing with difficult people, presentation skills, influence skills, etc.

CG: With regards to the EDA industry, how much further ahead of the curve does the software end up being? For instance, is EDA working on software necessary to define the 13 nm node currently?

HTAG: As you know, the industry is never at a single point. Rather, there is a spectrum of design nodes being used with some small percentage at the most advanced nodes. Most EDA tools are being developed to address these new nodes, often in partnership with the semiconductor manufacturers developing the process node or the semiconductor designers planning to use them. The big EDA companies are really the only ones, for the most part, that have the resources to do this joint development. Whatever is the newest node being developed, some EDA company is probably involved.

CG: You have written about the nature of the industry and how there being few players affecting the nature of the system. What kinds of limitations do you see in the industry due to the economies of scale (TSMC dominance, for instance)?

HTAG: Consolidation is a fact in any industry and a good thing in EDA. Think of it as natural selection whereby the good ideas get gobbled up and live on with more funding (and the innovators are rewarded); the bad ideas die out. Most small EDA companies would want to be bought out as their “exit”. At the same time, there are some “lifestyle companies” also in EDA where the founders are happy just making a good living developing their tools and selling them without having to “sell out” to a larger company. For all these small companies, the cost of sales is a key factor because they cannot afford to have a larger world-wide sales direct force as the larger EDA companies have. That’s where technologies like Xuropa come into play, that enable these smaller companies to do more with less and be global without hiring a global sales force.

CG: What drives the requirements placed upon new technology in the EDA space? How are the products developed? Are there a lot of interactions with specific big name designers (i.e. Intel) or does it shade more to the manufacturers (TSMC)?

HTAG: In fact, a handful of key customers usually drive the requirements, especially for small companies. When I was at Synopsys, Intel’s needs was the driver for a number of years. Basically, the larger the customer, the greater the clout. Other customers factor in, but not as much. The most advanced physical design capabilities of the tools are often a collaboration between the EDA company and the semiconductor manufacturers (e.g. TSMC) and the also the designers (e.g. Qualcomm). Increasingly, EDA tools are focusing on the higher-levels and you are seeing partnerships with software companies, e.g. Cadence partnering with Wind River.

CG: A good chunk of chip design is written and validated in code. This contrasts with much more low level design decisions in the past. In your opinion how has this changed the industry and has this been a good or bad thing? Where will this go in the future, specifically for analog?

HTAG: Being a digital designer and not an analog designer, it’s all written in code. Obviously, the productivity is much higher with the higher level of abstraction and the tools are able to optimize the design much better and faster than someone by hand. So it’s all good.

For analog, I am not as tied in but I know that similar attempts are being tried; they use the idea that analog circuits can be optimized based on a set of constraints. I think this is a good thing as long as the design works.  Digital is easy in that regard, just meet timing and retain functionality and it’s pretty much correct. For analog there is so much more (jitter, noise margin, performance across process variation, CMRR, phase margin, etc, etc). I think it will be a while before analog designers trust optimization tools.

CG:It seems that the EDA industry has a strong showing of bloggers as compared to system level board engineers or even chip designers. What kinds of benefits have you seen in your own industry from having a network of bloggers and what about EDA promotes having so many people write about it?

HTAG: I think blogging is just one form of communication and since EDA people are already communicators (with their customers), they have felt more comfortable blogging than design engineers. Many of the EDA bloggers are in marketing types of positions at their companies or are independent consultants like me, so the objective is to start a conversation with customers that would be difficult to have in other ways. A result is that this builds credibility for themselves that then accrues to their company. I think there has also been a ton of sharing and learning due to these blogs and that has benefited the entire industry. On a personal level, I know so many more people due to the blog and that network is of great value.

CG: How has your career changed since moving back out of the EDA space and into consulting? What kind of work have you been doing lately?  How has your experience helped you in consulting?

HTAG: It is interesting to have been on the EDA side and then move back into the design side. Whenever I communicate with an EDA company, whether a presentation or a tool evaluation or any conversation, I can easily put myself in their shoes and know where they are coming from. On the one hand, I can spot clearly manipulative practices such as spreading FUD (fear, uncertainty, and doubt) about a competitor and I can read between the lines to gain insights that others would miss. On the other hand, I also understand the legitimate reasons that EDA companies make certain decisions, such as limiting the length of tool evaluations, qualifying an opportunity, etc.

Most recently I’ve been working on some new technology development at a new process node. It’s been interesting because I’ve been able to dig deeper into how digital libraries are developed, characterized, and tested and I’ve also learned a lot more about the mixed-signal and analog world and also the semiconductor process.

Many thanks to Harry for taking the time to answer some questions about his industry and how he views the electronics world. If you have any questions, please leave them in the comments or pop over to Harry’s main site and leave a comment there.

Categories
Economics Life Politics Supply Chain Sustainability

Is There Room For The Electronics Industry In A Sustainable World?

Even though I’ve stated that I’m not as interested in sustainability as I used to be, it doesn’t mean I don’t think about it. I have been thinking about it in conjunction with investing and my own work in the electronic industry.

Growth is a very important component to the electronics business. It’s priced into many stocks and it drives much of the electronics food chain. Moore’s law has helped for a long time too. Shrinking the geometry of silicon every 18 months really required manufacturers to update their equipment often. This then drives the equipment manufacturers to advance technology to make the new fabrication possible. The analog engineers (ok, digital too) out there utilize the new chips and make requests for the next generation. The ripple effect continues all the way down the line, requiring input from the manfacturers and returning revenue to the shareholders of said manufacturers. Like I said, this growth is an assumption and is priced into how people invest in companies involved in electronics manufacturing.

There’s no denying that electronics are a dirty business. Not oil-gushing-from-a-hole-in-the-ocean dirty, but still, not exactly the most environmentally friendly situation either. The chemicals used in semiconductor manufacturing are not known for their safety nor their easy disposal; I’ve only had training on how bad they can mess people up but it goes beyond that; there are entire departments in semiconductor manufacturing facilities devoted to containing and disposing of the chemicals. Outside of the semiconductor world manufacturers have had to drastically reduce the amount of lead in products (in the solder and otherwise) but there are still elements of boards and parts that are not good for the environment. And given both the amount of turnover in the products that people consume year to year and the fact that very few products are designed for long term use, almost all electronics are bound for a landfill within a 10 year time frame (unless recycled). All of this adds up to a nasty picture for the planet.

A business built on growth and components that are not biodegradable nor regulated in their disposal. Is this model sustainable? Can manufacturers continue making products that are not safe for disposal and yet expect people to continuously update their personal electronic portfolio at home? Can manufacturers continue to crank out new devices ad nauseum and not be held responsible for the impact they make?

I do not believe the long term growth of electronics will plateau. While this may be good for my own career, part of me is very conflicted by the idea that my own success could be tied to the fact that we will have to consume more and more over time. Growth will always be driven by the next “must have device”, updating of previous generation devices and bringing electronics to a greater percentage of the population. But how can we rectify the needs (or perceived needs as it may be) with the very real issues and impacts associated with modern electronics? The material and energy inputs required and the waste from technology churn all make for hundreds of miles worth of disposed and forgotten cellphones and CRT monitors which took large amounts of the earth’s resources to make.

So assuming that growth of the electronics industry will continue unabated for various reasons, I think the question is better asked: Is a sustainable world possible with the electronics industry as we know it today?

I don’t usually say it on this site, but I have no clue about the answer to this question. Do you? Is it possible for there to be a healthy electronics industry when taking the planet into account? How does this affect the business model and should the people that manufacture products be responsible for what happens to the at the end of the products’ lifetime? Please let us know in the comments.

Categories
Analog Electronics Blogging Learning

Clueless About Income

I’ve been going over my personal finances lately. I’ve decided that I would like to increase my wealth (shocker, I’m sure). I’ve always been a bit of a cheapskate and I’ve cut back more thanks to the recession. And so I need to go in the other direction. And why not? Making more is just as effective as spending less on the road to wealth.

So how do I make money?

I’ve never really thought about that before. I guess there are the conventional routes:

  1. Ask for more money at my current job — We’re in a recession, remember? Try again.
  2. Get a new job — I could, but I like my current job and there are a lot of hidden costs with changing jobs. My move from Austin was pricey, and that was with help from my current employer. Not to mention I would have to win out over the many other qualified people out there who are currently employed. No thanks.
  3. Win the lottery — Ah yes, the illogical man’s backup plan. This wasn’t serious, I’m just trying to illustrate how little I’ve thought of making more money for myself in the past.

Wasn’t that a fun exercise? I’m not saying that’s all there is, I’m saying that’s all that came to mind before I really started thinking about it. So what other options are there?

Well, I’m sure at least one or two of you have noticed that I run a website. I could pretend that I could make money on here, selling links and putting up ads for people, but I just don’t think it will work; plus I usually hate how that stuff looks on websites. Aside from the fact that you really can’t make money with a blog, I’m not even sure I would want to. If you focus all your efforts on your one endeavor (such as writing), you lose the spice that makes your perspective so unique. Why else would an online comic artist go back to school for physics? (duh, to get good jokes about nerds!) I’d prefer to write AND continue working with analog electronics every day to be able to use skills I learn from one in the other.

Then there’s consulting. Ah, the money that can be made from consulting, so they say (you know…”they”). The thing is, I really don’t have that much experience yet nor do I have the contacts necessary (the most important part, so I hear). And this whole model is still dependent on others giving you a salary of sorts (albeit with more independence). While this is a possibility in the future, I just don’t see this as a possibility yet. (FYI: I also group “freelancing” in with this category. Freelancing is just consulting for a much lower price in my opinion).

Well why not make something? Selling a product has probably never been easier. The supply chain is set up, you can get prototypes up quickly and cheaply and there is a whole region of the world just waiting for you to send ideas their way that they can manufacture. The problem is, I said I want to make money, not spend it. And spend you will if you ever try to launch a product in any capacity. There’s always the homemade versions of electronics, such as kit manufactures and hobbyist board houses, but they’ve got those models down pat and I don’t have a lot of interest. So as of now, I’m counting the “product” idea out as well.

I wrote this post because I wanted to point out that there may be lots of ways to make money, but I’m stuck in a mode where I am dependent on others to give me a salary. That’s a dangerous position and one that will limit your earning potential over the life of your career. I’ve stated that one of my long term goals is to start my own company, but I’m thinking that I should perhaps start in sooner than later. That way I can get the mistakes out of the way early and decide if it’s a hobby or an actual money making endeavor. The main thing holding me back is that I have zero clue as to what I would do.

What about you? Have you broken out of the conventional model of going to work every day and earning a steady paycheck? I’m on the beginning steps of a long journey that could take many directions and having one or two people wave at me from down the path might make me feel a little better about thinking about finally leaving home.

Categories
Analog Electronics Engineering Interview

A Talk With An Analog Chip Designer

People who have read this site before are sure to have seen some of the witty comments from our friend Fluxor, who writes on his site, Flying Flux. What you may not have taken the time to find out is that Fluxor is a successful analog chip designer and has worked on myriad designs throughout his career. In my continuing quest to learn more about analog electronics, and specifically the difference between an analog system designer and an analog chip designer, I asked Fluxor if he’d answer a few of my questions. He was very gracious with his time and gave great insight into the world of analog chip design.

CG: Could you explain your background? What kind of schooling did you get and what subjects did you focus on?

Fluxor: I studied Electrical Engineering at the University of Waterloo (largest engineering school in Canada) where there’s a mandatory co-op program which allowed me to get a peek inside industry during my undergrad years. I worked for a laser company (now defunct), a telecommunication giant (now defunct), an aviation equipment company (now defunct), and my own company that I started with classmates (now defunct). I was especially interested in analog circuits (see It’s a Digital World…) and pursued that interest in the form of a Master’s degree at the University of Toronto (largest EE grad school in Canada).

CG: What kind of demand was there for engineers with your skill set when entering the job market? Do you think those same demands exist today and into the future?

Fluxor: When I finished my Master’s, it was the golden age of hi-tech, a few years before the dot-com bubble burst. Within 2 weeks of starting my job search, I had four job offers in my hands. Today, new grads have a really hard time finding jobs and the future job growth in hi-tech is no doubt in China and India. My company’s CEO, who I like to call the Big Flux, recently said explicitly that the company intends to hire mostly in these two countries with only very targeted hiring within North America.

CG: What kind of (technical) software do you use on a daily basis? How much time in a day is spent with that software?

Fluxor: I used to use Cadence software on a daily basis until I moved into a team lead position. Nowadays, I mostly use Microsoft products in my role as a “PowerPoint Engineer“.

CG: You work with leading edge technologies. How do you begin to rectify the theoretical knowledge with the on-chip realities? Does simulation take care of most problems or is some kind of other prototyping possible?

Fluxor: Simulation accuracy depends on model accuracy. Model accuracy depends on a stable manufacturing process. Leading edge, by definition, means that the manufacturing process has yet to become stable. Designing with ambiguity is part of the job, but the situation is getting worse as technology advances and transistors move ever so much more into the nano-world.

Theoretical knowledge provide you with a starting point in design and is great for understanding first order or perhaps even second order effects. Beyond that, simulations are necessary. But because the models may be unreliable, engineers must either over-design or ensure designs are inherently insensitive to manufacturing variations.

Prototyping is possible — that’s called taping out a test chip. You don’t get too many testchips as they are very expensive (millions of dollars for each iteration). Most of our designs have one testchip. The next one is supposed to be the real product, although with design bugs, multiple iterations (or sub-iterations, such as metal changes) are not uncommon.

With chip design, you not only have to make the chip work, you have to make sure that out of the millions of chips that are produced (one product that I worked on is now in production — 1 million parts per week), almost every single one of them will work across varying supply voltage levels and temperatures. That’s called designing for manufacturability or designing for yield.

CG: What is the granularity of the pieces of the design you work on? Are you creating entirely new transistors or piecing them together into larger structures? Who does the architecture for the entire chip? How do you interact with people that create other components in that architecture?

Fluxor: I rarely do circuit design nowadays, but not too long ago, when I designed a PLL, I had to design at the transistor level for almost every single sub-block of the PLL. This means VCOs, charge pumps, loop filters, dividers, etc. That means deciding how large of a transistor you’d need and then stitching them all together to make, for example, a charge pump. Then at a higher level, stitching together the charge pump with the loop filter with the VCO, etc. to make a PLL. At the PLL level, system level simulations can be done with Matlab or other high level simulators, like Cadence’s AMS (analog mixed-signal).

Architectural work can be done at the block level, sub-system level, system level, chip level, board level, etc. How many levels you have in the chip depends on its complexity. There’s a good amount of architectural work that’s required at each level of design. Some are done by circuit designers, some are done by “architects” that do mostly Matlab simulations, and some are done by digital folks who are responsible for stitching each component of the chip together.

As for interactions with other groups — meetings, meetings, and more meetings.

CG: How much interaction do you have with the process people in the fab? Do you have any design decisions on low level characteristics (doping, etc) or is that preset as building blocks you are allowed to work with? Do you spend any time in the fab?

Fluxor: None, no, and no. Our company does have a group that deal directly with the fab. They have more say in how things are done.

CG: Once you receive first silicon how much time do you spend on the bench verifying the design? Do you take care of that yourself or is it left to test engineering?

Fluxor: Testing can go on for a year or two. Some of it is done locally in our new expensive lab, but most of it is left to test engineering with guidance from the circuit designers.

CG: How much do you hear back from end users on the implementation of your device? How does this feedback affect your future design decisions? Are you told to design to a certain specification or is it more of “As good as possible” for all characteristics?

Fluxor: Our customers are not end users. They take our chips and put them into a larger product that then gets sold to end users. We only hear back from our customers and their feedback can very well impact future design decisions. Our specs are a combination of hard specs (non-negotiable) and soft specs (I’ll do my best to meet them). Mostly, they’re hard specs.

CG: What, if anything, do you wish was different in your specific job? Do you wish you did anything differently in your career?

Fluxor: For me personally, I wish I didn’t have to work with the Psycho Colleague. But overall, this is the best company I’ve ever worked for. For one thing, it’s not defunct…yet; for another, I get free food! It’s also best job I’ve ever had and I feel awfully blessed to be in such a position; my last job was the absolutely worst job I’ve ever had (yes, even when compared against my high school job as a french fry maker).

If I had to do it all over again, I would have tried to work for Goldman Sachs. One year’s worth of bonuses is enough to retire on. I can then take that money and do all the cool and wacky engineering that I’d really like without worrying about money.

It was really great of Fluxor to take the time to explain the kinds of experiences he has had in the industry. In my own position I have realized that there are lots of different roles throughout the “electronics food chain”, from the chemical suppliers to a fab, to a test engineer in a packaging factory in China, to a board level designer such as myself, all the way to the sales people that hand you the cell phone you just purchased. I hope to find and talk to more people throughout the industry and get their perspective on how they view their positions and how they fit into the larger electronics scene. If readers know anyone, I would welcome suggestions. And of course I would try to focus on how the jobs of those I talk to specifically relates to analog electronics.

If you have any questions, please leave them in the comments and be sure to click through some of the links above and read Fluxor’s daily experiences!

Categories
Engineering House Learning Life

On The Importance of Prototyping

Sometimes I dive head first into problems and it gets me in trouble. Other times, this is called “prototyping”, which is encouraged in many engineering circles, and sometimes even required! The best case scenario is when you can flesh out the details and downfalls of a project before you make costly design decisions. You can realize not to use a particular op amp or even decide if a project is feasible at all.

I’m not shy to say that Google SketchUp is one of my recent favorite prototyping tools. While it’s not the SPICE simulation or the rapid circuit prototyping that most people might think of for analog system designers, it is useful in myriad projects. Even just knowing what form factor a future analog board might need to take (by making a quick drawing of what you envision your product to be) can save lots of time, money and headaches.

My experiences with Google SketchUp  prototyping (drawing, really) has been to help me realize what kinds of components I’m looking for when making design decisions. And it could help you too, at least in a mechanical perspective. Perhaps you know that a certain connector shape and size will be better than another. Or that you’re space constrained and can’t use a particularly large inductor.

My most recent (home) project has been building myself a home theater PC (or HTPC). I use it to watch shows on Hulu.com and surf the internet in my living room; in the future I might also task it with home automation type functions as well (turning on lights, closing blinds, etc). Quite convenient and the first PC I have ever built. But I wanted to mount the HTPC in a nearby stairwell to keep it out of sight. I first did a mockup drawing in Google Sketchup:

As you can see, the models are 3D; they’re darn easy to make too. I can’t speak highly enough of the program itself.

Aside from the program though, the results allowed me to figure out what I would need for my build. The first requirements were easy. I wanted to make sure my HTPC didn’t fall down the stairwell. I know, I’m a stickler for protecting my investments. But figuring out the shelf and strap idea was a breakthrough in my design. It would be low cost and sturdy. Here’s how it ended up looking:

Notice I ended up buying cheap off the shelf wall mounting brackets instead of trying to create my own out of 2x4s cut at funky angles. This was an iteration on the original design idea I had in the SketchUp drawing.

And a picture of the component that the model pointed to as critical for the design:

So would I have been able to design all of this without the “prototype” I made? Yeah, probably. I would have figured something out or used duct tape or something to get it all together and working in some capacity. In the situation shown here though, I was able to determine troublesome components and think of a workaround before they became an issue (i.e. it only took me one trip to the hardware store, pretty good given my past record).

So next time you’re doing a home or work project, try prototyping, even if it isn’t necessarily electrical (hey, maybe that’s even more reason to try it, right?). It could save you time, money and frustration.

https://chrisgammell.com/2008/07/23/analog-engineer/
Categories
Engineering Learning

Thoughts on the Fundamentals of Engineering Exam

Welp, it’s over. And I survived. We’ll see in about 10 weeks if it was worth it.

Overall, it was an interesting experience.

The test itself was very stringently administered. Imagine going to an airport. You stand in line for a long time. You get through the door. You make sure you have your ticket and your government issued ID out and ready to be checked. “Walk through the door please!”, they say.  Hold up your belongings. Are they all in a clear ziplock bag? They’d better be, otherwise they take them away. No cellphones during liftoff. No cellphones at all, you’ll get kicked off the plane in a second. Once you’re ready to disembark you need to wait for the attendants to finish checking. Everything. Thoroughly.

So what did I really learn? Something quite interesting:

I no longer plan to go to graduate school. (I had talked about possibly going back in a previous post)

That’s not really the subject of this post, I’d like to focus on that later, if at all. The short version is that I don’t think I am capable of the things that graduate school demands, at least from students who also work full time. Studying on a nightly basis, giving up all hobbies and time with loved ones; all of these things drive me away from the idea of getting an advanced degree. It’s not that I believe it wouldn’t help my career; I really just am not willing to give up my quality of life in order to get that particular piece of paper at this point in my life. Who knows? Perhaps there will be a time when it is truly required of me to have an advanced degree. However, from a learning perspective I feel that I would be forced to learn just as much–if not more–starting a company; plus that would be much more fulfilling in terms of having a similar time commitment and potential payoff (i.e. if I’m going to spend all that time, why not have a company instead of a piece of paper? Both look good on a resume, right?).

So back to the test. I had been studying for a month or so, perhaps a little bit longer in name only. I borrowed a used review book from a friend:

Everyone uses it, as I’m pretty sure it’s the only one out there. Want to know my personal/(possibly)professional (engineer) opinion? It was way overkill. 40 some odd chapters on every section that could possibly covered by the test. It went pretty deep about each and every topic, to the point that you might see the hardest question on the afternoon general section (the same range of topics as in the morning session, just more difficult). I think it’s important to note that depending on the year the testing board might throw one curveball after another your way or they might just keep lobbing softballs in your direction. Either way, you probably won’t need to learn (or re-learn) all of the material in the depth each chapter goes into with rigor.

Me? Well, I’m not allowed to tell you any details about the test itself. Our flight/test attendants were very sure to remind us over and over again that we were under non-disclosure agreements not to even talk about the test questions amongst our friends. What I believe I can say is that I enjoyed the afternoon section much more than the morning session. If you don’t know about the FE, the morning is 120 multiple choice questions spanning all of the knowledge that an engineer is expected to know after four years of engineering school. I would disagree. I would counter that the morning session is 120 questions for the mechanical and civil engineers. Now, it could be they have greater breadth in their respective disciplines, and even some crossover. It could be that being an engineer other than an electrical engineer requires greater cognitive capacity. Hell, it could be that I just didn’t study enough. But I’ll tell you, an electrical engineer such as myself has never known that much about beams, trusses or adiabatic systems…and never will! To add insult to injury, I think the EE questions were some of the softball-like questions on the exam. Let’s just say I probably had a much harder time with the mechanical/static stuff than the mechanical engineers had with electricity. Or maybe I just don’t care when a beam is going to start deforming irreversibly.

The afternoon session is 60 questions in your discipline, unless you decide you enjoyed the breadth of topics covered in the morning session or your particular discipline isn’t tested (BME for example). The section I decided to take was based upon electrical engineering topics, even expanding away from the typical circuits/power/E&M type questions into the DSP/communication/control disciplines (to all the NCEES people out there, this isn’t information that isn’t available in your lovely handbook). I definitely had to stretch my mind around some of the questions and even learn some before unseen topics while in the session. But that’s what engineering is really all about, right? In the end, if I passed the FE exam, I feel like these questions were much more in the direction I would have to take for the PE exam (to get final certification).

Would I do it again? Well, no, I don’t plan to (if I didn’t pass). I’m glad I tried it at least once. Does that make me sound like a quitter? Maybe. But I justify it as me not needing to be certified by a board that requires such stringent knowledge of beams. Ugh. Beams. Thank goodness there are people out there that enjoy studying and working with them. And that they’re certified to sign off that the beams won’t in fact bend.

Categories
Economics Life Renewable Energy

I Have A Million Dollar Idea For Free Energy!

Ha, my title sounds like the beginning of a spam email. I’m actually even willing to have at least one FeedBlitz email that gets sent out to be caught in a spam filter, just to prove my point.

Either way, the title of this post looks ridiculous. And yet it is pervasive in headlines on the internet and in newsprint. Why? Because people are hungry for new ideas, new ways to try and make money and free energy (I guess those could all be classified under the money category). The reason these headlines are everywhere is because they work. They grab peoples’ attention, including my own.

But wait.

There are no breakthroughs, right?. There are, but they’re much more rare than the public is lead to believe. Even those breakthroughs aren’t even that big of a leap from the previous discovery. That’s just not how science works, people. Science is iterative. Science is boring. That’s the way science is designed to be. You think up a hypothesis, you test it, you repeat based on those results. Even if you do have some huge breakthrough, you really need to test it out rigorously to determine if it truly is a breakthrough.

Because of this realization, I’ve decided to create a simple guideline for the news media (who will ignore it, even if they ever saw it) and for aspiring pseudo-scientists, who are probably just people trying to sell the first “technology” they get their hands on.

Step 1: Ask yourself, “Has this been done before?”

I’m guessing that yes, you have asked yourself this; and no, it has not been done before. Why else would you be trying to report on it and/or sell it to people? If this has been done before, go back to the drawing board. No one wants to hear from you. (See, this is like science!)

Step 2: If this hasn’t been done before (and this technology you’re investigating seems like a breakthrough), ask yourself, WHY hasn’t this been done before?”

This is the step that people miss. Either when reporting on a technology or worse, trying to “create” a new technology, they ignore this step. For example, say you’ve figured out that you might be able to harness the motion of trees blowing in the wind. OK, why isn’t anyone doing it now? Have you considered the efficiency of the conversion process? Have you considered the economics of trying to harvest this energy? How long will the payback be for people that purchase such a system?

Step 3: If you believe you’ve overcome the 3 of the stumbling blocks of discovering new energy technologies (efficiency, money, ROI), what has changed?

Be specific. Saying that “it’s never been done before!” will be considered an incomplete answer and you will fail the test. If you are a reporter doing a story on an energy technology that will eventually be the next big thing, say exactly what has to happen and how soon it would have to happen in order for that technology to become viable. If you are “developing” that next big thing, tell us what you overcame and possibly how you overcame it; in the event you are not allowed to divulge that info because it is a trade secret, be prepared for future scrutiny and skepticism. Shrouding a problem does not solve it.

Step 4: Determine: Are you (or the people you’re reporting on) capable of delivering on a consistent basis all of the things that are promised?

Here are some examples of news stories or “inventions” I have heard about but that did not deliver:

  • A new chemical compound that can burn hotter and longer than fuel sources currently used but is extremely expensive to make (process). Since it was sold as a disruptive technology, this could not deliver because disruptive technologies must be economically feasible.
  • A new processing technique that is based upon ideal lab conditions and low volume manufacturing. Data was not based on a large sample size with many permutations of input variables so the promised (laboratory) conditions could not be delivered.
  • A microenergy harvester that was not capable of delivering because the efficiency of the converter was not calculated with realistin inputs and operating conditions. As such, the advertised output power could not be achieved.
  • A device based on permanent magnets that requires less energy put in than can be recovered. NOTE: This can never deliver as promised, see laws of conservation of energy and thermodynamics.

I’m not trying to say that people shouldn’t attempt to develop new technologies nor should they only do research on things that are immediately economically viable. That is short sighted and many past inventions would have never been achieved with that mindset. The people I’m reaching out to are the so called “reporters” out there and the so called “inventors”. Basically what I’m saying is that I too am hungry to hear about the next big thing. I look often and I find the same story each time. There was either a miscalculation or a misquote or a fancy-pants marketer trying to sell his big dumb ultra-capacitor that no one has seen to this day (p.s. it’s 2010. We’re still waiting!).

I know I’ve been guilty of it too, getting overzealous about under-developed new technologies. I’m a far cry from mainstream media though and I’ve yet to start “Gammell Energy Industries” to sell a ghost product. So if you’re a reporter/marketer/inventor/whatever, please be gentle with my hope for technologies that will help solve problems in the world. When you lie about a new product or technologies’ capabilities, it only dashes the hopes of others and removes focus from solving the problem at hand.

Categories
Life

A Short Retrospective

Looking back through the past year I naturally gravitated towards the idea book and calendar I used to keep. While I did find some dormant post ideas I might resurrect for this site, I thought this short idea (gripe really) was much more entertaining; plus I’m not too sure when I would ever post this other than now. A list of words/phrases that don’t necessarily have anything to do with electronics but ones I can’t stand nevertheless.
Here we go:
  1. Infotainment
  2. Blogosphere (I know I’m about 10 years late on that one but it still irks me)
  3. [Anything]-palooza
  4. [Anything]-czar
  5. “Let’s compare apples to apples”
  6. Pieces parts
That is all.
.
.

.
.
.
.
.

.
.
.
.
Ah wait! In other news, this is my hundredth post (feels like it’s been longer). Yay for using a Base10 numbering system that gives arbitrary milestones!
Categories
Life

Merry Christmas!

To all friends, family, readers and random passers-by: Thank you for coming to my site and I hope you have a Merry Christmas and a Happy New Year!

Component_Tree

This tree was decorated with the help of a few scrapped boards from the late 80s and early 90s. The red components are relays and there are a few electrolytic capacitors scattered throughout. The LEDs were scavenged from a display board and set to pulse with a Source Meter that was sweeping current from 0 to 10 mA. High precision resistors could also be found on the tree, although it may be tough to tell they were actually high precision. The star at the top of the tree was made from 5 DIP package op amps and one can op amp. The “tinsel” and “garland” was actually solder wick and solder.

Categories
Engineering Learning Work

Back to School?

Much like I’m not going to say that I’ve been too busy to post anything for the past 2-3 months, I’m not going to say that I’m definitely going back to school to get an advanced degree. However, I’ve considered saying both.

Really, I’ve considered going back to school as soon as I started my first job and was dissatisfied. I mean, who hasn’t? Aside from the fact that I was previously on a co-op cycle of (work, school, work, school, and so on), I really felt nostalgic for school; I found myself saying things like: “It’s so much less work when you’re in class for a few hours a day!”, “I’ll definitely love all those new subjects I’ll be studying!”, “I’ll have lots of free time during the day to get things done and then study at night!” and many others. They’re all complete bull of course, none of those things are true for full time grad students. In fact, school can be much harder at times. I often found myself so overloaded between (continued) work and school that I would be sleeping four hours a night; plus I’m guessing I would have been sleeping those same four hours had I not been working, the waking hours would have just been spent more effectively on my classes.

The only problem now is I can’t be a full-time student.

Well, I could, but all the kinds of debt I’d get myself into would be really unrealistic for the amount I would gain from an advanced degree. Since buying and fixing up my home last winter, I have taken on some markedly adult-like responsibilities in my life. And so I began investigating options. Going back to school is not something that I take lightly, nor should anyone out there; in the event that I make it back to school in the near future, it will be a long slog through homeworks and tests and unrealistic deadlines and the such. And all for a piece of paper. Luckily I had some great advice about school/work/life balance from my former boss and mentor:

Based on my experience, I would say make sure that all of your house projects are complete before you start and don’t plan on starting any new projects until you get your degrees (both of ‘em!). Also make sure your personal life is well-organized and in good working order. Don’t take in any more dogs, cats, or other mammals. You may also need to (*gasp*) scale back your musical activities.

While he was obviously joking about certain things there (no more music??), I take his advice to heart; I’ve also seen similar behavior from co-workers who are also in school right now. You really have to throw yourself into studies to get the most out of it. I think my perspective now that I’ve been out in the working world for a while will really allow me to succeed, both in the things I have already learned and how I approach problems.

The first kind of decision I will need to make is what kind of Master’s degree I would want to attain. I was actually quite surprised there was even more than one option available. The first degree I think most people think of in Electrical Engineering is an Masters of Science in Electrical Engineering (MSEE of MScEE). I already missed the boat on the BS/MS program that my alma mater offered; this was a program that allowed students to automatically segue from their undergraduate studies into an advanced degree, often taking Master’s courses early to help push the amount of time spent on the MS down to 1 year. So the next option I could have done was go back to school for a Master’s degree (the normal way) and then write a thesis at the completion of my studies. This would likely involve research with a faculty member and the thesis would be based around that research. I doubt this option would be possible for me, because of the aforementioned house, mortgage and “grown-up” responsibilities, up to and including my job (which I wouldn’t want to give up either). Yet another option would be a “project-only” MSEE offered at some schools that would involve the same coursework as any other master’s degree; however, the thesis would be replaced with a project, possibly in conjunction with day-job projects (but probably segmented in some way or another). At the programs I am looking at, this option is only allowed when working full time and going to school part time; luckily, that is one of my few options. The other interesting option is something that is called a “Master’s of Engineering” (in Electrical Engineering in this case). My alma mater offers such a degree (abbreviated as “MEng”) and has a streamlined course offering for engineers in my situation. The degree leans more towards mixing business and science, as many engineers do on a daily basis. In that regard, it could be a very helpful degree, in the event it imparts the necessary business acumen to get by in the hard business world. However, I question the degree and how it would be viewed in the working world once I am finished:

  • Will employers view it as a lesser degree if I try to stay in the technical field?
  • Will a MEng degree limit where I can go in my career?
  • Do I ever want to get a PhD or am I OK with a “terminal degree” such as an MEng?
  • Will I be able to learn all the technical things in a more balanced program such as the MEng?

I’ve also been considering which schools I would even be able to attend. Thanks to the digital age, commuting distances have been shortened to only the time it takes for light to travel down a wire. What that means for John Q Public-school-graduate such as myself is that a lot more schools are now accessible to a full time worker. And not just the University of Phoenix here either. We’re talking top 50 engineering schools. Who you ask? How about:

  1. Stanford
  2. Georgia Tech
  3. Purdue
  4. University of Florida

Even those four provide a pretty heavy hitting list of top research institutions offering the course work entirely online. Sure, this might be a more difficult way to collaborate with others in your class or work on projects or communicate with the teacher; but it also means that geographical barriers are becoming less and less of an issue. If I had an online electronics store that I ran out of a shack in the backwoods of North Carolina, I could now attend the number 2 engineering school in the country just as well as someone living in Palo Alto (assuming I was accepted). So while I do have a wonderful institution and my alma mater in my backyard (CWRU), I also have more options and more specialized coursework for whatever branch of EE I would like to explore more.

So what next? I guess now I have to take the GRE and get applying (and eventually figure out how I would pay for it all…). As much as I’ve thought about the potential convenience of going to an online version of a school, it’s applying just like any other Master’s Student. So really the online programs are more like you’re enrolled at the school, you just can’t ever make it to class because you’re sick all the time; plus the professors are nice enough to send home your schoolwork (but not in a folder like back in elementary school days).

In the coming weeks/months/years (who knows?), I’ll try not to write about school plans too much. However,  think there are some issues that merit discusion on here and elsewhere (and hey, I like getting help from people responding in the comments). I’ll probably write at least once about my potential area of studies (should they be similar to what I’m doing right now? Should they be more towards my interest in DSP?). I’d really love feedback from anyone that happens to read this, especially students who went back to school after being in the working world for a while. Please leave any tips or tricks you might have in the comments.