Categories
Analog Electronics Digital Electronics Engineering Learning Life Work

How to get a job as a new electrical engineer grad

I was going to call this post “A portrait of an electrical engineer as a young man (or woman)” but decided against it. I’ve got nothing on James Joyce, neither in loquaciousness nor confusing writing.

Anyway, I have been pondering what kind of employee I would hire out of school for an electrical engineering position. There are some basic skill sets that will allow just about any young engineer to succeed if they have these skills (the best situation) or at least appear they will succeed if written on their resume (not the best situation). Either way, let’s look over what a new grad should have on their utility belt before going out into the scary real world.

  1. Conceptual models of passive components — This has been one of the most helpful things I have learned since I have left school…because this kind of thinking is not taught in classrooms (at least it isn’t in the curriculum). The idea is to conceptualize what a component will do, as opposed to what the math is behind a certain component or why the physics of material in a component give it certain properties. Why does this matter? When you’re looking at a 20 page schematic of something you’ve never seen before, you don’t care what kind of dielectric is in a capacitor and how the electric field affects the impedance. Nope, you care about two things: What is the value and how does it affect the system. The first question is easy because it should be written right next to the symbolic notation. The second is different for each type of passive component you might encounter. Let’s look at the common ones
    • Resistors — The  best way I’ve found to think of resistors is like a pipe. The electrons are like water. The resistance is the opposite of how wide the pipe is (if the resistance is higher, the pipe is smaller, letting fewer electrons through in the form of current). Also, the pressure (voltage) it takes to get water (electrons, current) through a pipe (resistor) will depend on the thickness of the pipe (resistance). Well whaddaya know? V=IR!
    • Capacitors — At DC, a capacitor is essentially an open circuit (think a broken wire). If you apply charge long enough (depending on the capacitance), it can consume some of that charge; after it is charged it will once again act like an open circuit. When considering AC (varying) signals, the best way to think about a capacitor is like a variable resistor. The thing controlling how much the capacitor will resist the circuit is the frequency of the signal trying to get through the capacitor. As the frequency of the signal goes up, the resistance (here it is called “impedance”) will go down. So in the extreme case, if the frequency is super high, the capacitor will appear as though it is not there to the signal (and it will “pass right through”). Taking the opposite approach helps explain the DC case. If the signal is varying so slowly that it appears to be constant (DC), then the impedance of the capacitor will be very high (so high it appears to be a broken wire to the signal).
    • Inductors — Inductors have an opposite effect as capacitors and provide some very interesting effects when you combine them in a circuit with capacitors. In their most basic form, inductors are wires that can be formed into myriad shape but are most often seen as spirals. Inductors are “happy” when low frequency signals go through them; this means that the impedance is low at low frequencies (DC) and is high at high frequencies (AC). This makes sense to me because if the signal is going slow enough, it’s really just passing through a wire, albeit a twisty one. An interesting thing about electrons going through a wire is that when they do, they also product tiny magnetic fields around the wire (as explained by Maxwell’s Equations). When a high frequency signal tries to go through the inductor, the magnetic fields are changing very rapidly, something they intrinsically do not want. Instead it “slows” the electrons, or really increases the impedance. This “stops” higher frequency signals from passing through depending on the inductance of the inductor and the frequency of the signal applied. Looking at the how they react to different frequencies, we can see how inductors and capacitors have opposite effects at the extremes.
    • Diodes — I think of diodes as a one way mirror…except you can’t see through the one way until you get enough energy. The one way nature is useful in blocking unwanted signals, routing signals away from sensitive nodes and even limiting what part of a varying signal will “get through” the diode to the other side.
    • Transistors — I always like thinking of transistors as a variable resistor that is controlled by the gate voltage. The variable resistor doesn’t kick in until the gate voltage hits a certain threshold and sometimes the variable resistor also allows some energy to leak to one of the other terminals.
  2. C coding — Sorry to all you analog purists out there, but at some point as an engineer, you need to know how to code. Furthermore, if you’re going to learn how to code, my personal preference for languages to start with is C. Not too many other languages have been around for as long nor are they as closely tied to hardware (C is good for writing low level drivers that interpret what circuits are saying so they can talk to computers). I’m not saying higher level languages don’t have their place, but I think that C is a much better place to start because many other languages (C++, JAVA, Verilog, etc) have similar structure and can quickly be learned if you know C. Even though the learning curve is higher for C, I think it is worth it in the end and would love to see some college programs migrate back towards these kinds of languages, especially as embedded systems seem to be everywhere these days.
  3. How an op amp works — I set the op amp apart from the passives because it is an active component (duh) and because I think that it’s so much more versatile that it’s important to set it apart conceptually. I’ve always had the most luck anthropomorphizing op amps and figuring out what state they “want” to be in. Combining how you conceptually think about op amps and passives together can help to conceptualize more difficult components, such as active filters and analog to digital converters.
  4. The ability to translate an example — A skill that nearly every engineering class is teaching, with good reason. Ask yourself: are homework problems ever THAT much different from the examples in the book? No. Because they want you to recognize a technique or a idiosyncrasy in a problem, look at the accepted solution and then apply it to your current situation. Amazingly, this is one of the most useful skills learned in the classroom. Everyday engineering involves using example solutions from vendors, research done in white papers/publications and using even your old textbooks to find the most effective, and more importantly, the quickest solution to a problem.
  5. High level system design — This is similar to the first point, but the important skill here is viewing the entire picture. If you are concentrating on the gain of a single amplification stage, you may not notice that it is being used to scale a signal before it goes into an analog-to-digital converter. If you see a component or a node is grounded periodically, but ignore it, you may find out that it changes the entire nature of a circuit. The ability to separate the minutiae from the overarching purpose of a circuit is necessary to quickly diagnose circuits for repair or replication in design.
  6. Basic laws — It is amazing to me how much depth is needed in electrical engineering as opposed to breadth. You don’t need to know all of the equations in the back of your textbook. You need to know 5-10; but you need to know them so well that you could recite them and derive other things from them in your sleep. A good example would be Kirchoff’s laws. Sure, they are two (relatively) simple laws about the currents in a node and the voltage around a loop, but done millions of times and you have a fun little program called SPICE.
  7. Budgeting — There are many important budgets to consider when designing a new project. In a simple op amp circuit, there are many sources of error and inefficiencies. Determining and optimizing an error budget will ensure the most accurate output possible. Finding and determining areas that burn power unnecessarily must be discovered and then power saving techniques must be implemented. The cost is another consideration that is usually left to non-engineering, but is an important consideration in many different projects. Finding cost effective solutions to a problem (including the cost of an engineer’s time) is a skill that will make you friends in management and will help you find practical solutions to many problems.
  8. Math — Ah yes, an oldy but goody. Similar to the passive components, having a conceptual notion of what math is required and how it can be applied to real life situation is more important than the details. Often knowing that an integral function is needed is as important as knowing how to do it. And similar to the basic laws, you don’t need to know the most exotic types of math out there. I have encountered very few situations where I need to take the third derivative of a complicated natural log function; however, I have needed to convert units every single day I have been an engineer. I have needed simple arithmetic, but I’ve needed to do it quickly and correctly. Sure, you get to use a calculator in the real world, but you better learn how to use that quickly too, because your customers don’t want to wait for you to get out your calculator, let alone learn how it works.

Each of these skills could be useful in some capacity for a new electrical engineer grad. There are many different flavors of engineering and the skills listed above are really modeled off what would be good for an analog system engineer (who develop commercial or industrial products). However, a future chip designer and even a digital hardware engineer all could benefit from having the skills listed, as it is sometimes more important to be open to new opportunities (especially given the possibility of recession and potential shifting of job markets).

Did I miss anything? Do you think there are other skills that are necessary for young electrical engineers? What about general skills that could apply to all young engineers?

[xyz_lbx_default_code]

Categories
Analog Electronics Economics Supply Chain

DC powered home

Either my readership has extended to people at multinational corporations or the idea is intrinsically viable enough to actually work! Either way, I’m happy.

Junko Yoshida of EE Times reports that Sharp Corp and TDK corp have both displayed home mock-ups that include DC modules running of of solar cells and do not require any AC/DC or DC/AC conversion (thereby saving power wasted on the conversion process). This is reminiscent of when I asked if DC can power an entire home. They cite instances of using DC power to directly use in LED home lighting, flatscreens and various other commercial products.

Looks like the idea is catching on, I can’t wait until it becomes possible for everyone!

Categories
Analog Electronics Renewable Energy

Can DC power an entire home?

AC power vs. DC power: Both are necessary in our everyday lives and switching between the two causes a great deal of strife in electronics. Why do we need both?

As some of you may or may not know, there was a long standing battle between the two types of power raging back in the 1880s between two giants. The proponents of this war knew that whoever won would determine the future of the power distribution in the United States and possibly the world. In the first corner was Thomas Edison and his company that would eventually become General Electric; Edison wanted the world to run on DC. In the other corner was Westinghouse Corporation, funded by George Westinghouse and led (intellectually) by Nikola Tesla. Westinghouse represented AC power and would be the eventual winner. You can read more about the battle HERE, but I thought it would be interesting to point out that this battle eventually became a political one. Edison even started fighting dirty, secretly funding the invention and use of the first electric chair powered by AC, in order to give some bad press.

AC of course won out over DC as the power distribution of choice, mainly because of the ability to have large generators in a central location and then transmit the power efficiently over power lines to homes and businesses. DC would have required local generators on every street or even every home, which was not possible nor economically viable at the time.

Hang on a second though…a DC generator on every home…sounds familiar…where have I heard about something like this before? Oh right, solar power. However, even more interesting than the fact that solar power produces DC power output is that any kind of storage will have to be in DC. So THAT means if you have any kind of renewable energy resource on your premises (wind, geothermal, any kind of generator which will have an AC output) and it’s not continually supplying power to your home, you will likely need to store it somewhere (assuming you are not selling power back to the power company, which is the case in some areas still and a must in the remote areas). Further, barring any possibility of storing AC power (a huge inductor?), you will need to store that power in DC. So let’s look at a theoretical wind turbine on a theoretical property:

The wind blows –> wind turbine spins –> motor in turbine creates AC power –> AC converted to DC –> DC stored in a battery –> DC converted back to AC when needed –> AC powers devices in a home –> (possibly) AC converted back to DC for use in consumer devices

That’s a lot of steps! Not only are there a multitude of steps to convert wind into air conditioning (heh, the electrical way…the natural way is opening the window), there are lots of places that you will be losing energy to inefficiencies. These occur in the power generation (motors have friction), the storage in the batteries (heat and losses due to chemical impurities in the wet cells), the AC to DC conversion and the DC to AC conversion (both processes lose energy to heat in the electronics). All told, it’s not hard to see why this is not the preferred method of powering ones’ home.

So now the real question: Can we take out some of these steps?

Other articles on this site will deal with improving efficiencies of each of these steps, but the simplest method for improving overall efficiency would be to remove one or more of those steps. The way I see it, one of these ways would be to convert a power scheme in a house. Let’s look at all the ways a DC power system in a house could be beneficial or detrimental to ones’ living situation:

Concerns about DC wall power

  1. Many devices have different voltages
    • This would be a definite issue. Have you ever had to power a guitar pedal board? Random question perhaps, but if you saw what the power strip looks like, you’d catch my drift. Every one of those little electronic devices is too small for a transformer, so they all have AC-DC converters which can power the device with a different required voltage. Now take this idea and expand it to all the doo-dads in your house. I would be willing to guess that there are at LEAST 5 different required DC voltages for all of the normal devices in a home.
  2. Converting devices
    • Conversions would be required from DC->DC instead of AC->DC. A possible solution would be to set up the wall sockets to have selectable DC output (perhaps the home runs on 100V DC and each socket can convert this down to 24V, 12V, 5V, 3V).
  3. Selling power back to the power supply company
    • One of the most popular notions in renewable energy today is the idea of selling your excess power back to the power company, hopefully at a decent rate. Then when your device is not outputting power, you simply switch to grid power and start buying it from the power company. This is great because it does not require battery systems. And while this exercise excludes that option (for people living in the middle of nowhere or with unaccommodating power companies), it would be nice to sell any excess power back to make a small profit.
  4. Economies of Scale
    • This is possibly one of the biggest problems that an all DC power system would face: No one does it yet! All parts would have to be custom made and you couldn’t just call an electrician to come out and fix your stuff.
    • This also means that you would have a tough time buying consumer goods. Nearly every device has an AC plug, because that’s what everybody has! Not to mention all of the internal components for AC conversion and occasional power filtering (some devices need very clean DC power). Let’s just say you couldn’t go buy a TV and plug it in…
    • Government regulation would also limit any kind of large scale implementation of DC power sockets. It is almost guaranteed that it would require government certifications on many levels to allow manufacturing large enough quantities to bring the cost down for Mr. John Q Everyman.
  5. Conversion to AC for certain devices
    • Motors are the first kind that come to mind. This is basically how Nikola Tesla got started onto AC, proving that it is much more efficient when using AC than DC AND that these motors do not rely on voltage level (DC motors’ speed can be controlled by the voltage applied). This would mean you would either have to convert your DC back to AC to run the vacuum cleaner or you would have to make sure that your DC could supply constant DC and the whopping currents that those kinds of devices use.
  6. Step up/down transforming
    • You know those big garbage can looking things that are attached to power line poles? Those are changing the ridiculously high voltages in the power lines (done for transmission efficiency) down to something that we can use in our houses. Further, these are VERY high efficiency devices. For power in general, you really can’t beat AC-AC conversion; the system proposed here would have to use transistors (note: not transformers) which will have some amount of heat loss associated with them. So even though we wouldn’t be using the AC power from the power company, we would be losing a critical tool in the electrician/electrical engineers’ arsenal, the transformer.
  7. Leakage currents and phantom power consumption
    • No transistor is perfect, they all let just a little bit of current through. The more components in a system or the higher voltage you run at, the more leakage you will tend to have (Ever wonder why electronic devices run out of batteries eventually, even if you don’t use them for a long time?). This would apply to any DC system too and when you don’t have the lights on or anything running, there’s still a chance that the power devices are leaking. This will cut into overall efficiency.

Benefits of using DC instead of AC:

  1. Higher efficiencies off of battery power
    • This point was discussed above, but is THE main point of the article and for going to all this trouble. The less you need to convert between AC and DC, the less energy will go to waste. And if you do need an AC power source, the inverter could be much smaller, in order to handle smaller loads or in order to sell power back to the power company (once the battery is fully charged)
  2. LED Lighting
    • Currently any LED fixture installed in homes requires an AC-DC converter. Using a DC wiring system throughout a home would allow easy installation of LED fixtures and elements (the LEDs themselves)
  3. No 60 Hz hum
    • I’m sure most of you know what this sounds like from a faulty light switch, an older device with poor power supplies or even by sticking a fork in the wall. The native frequency of power coming out of the wall is 60Hz in the US, but varies by region. Either way, this is something that I’ve had to deal with at my job and that all electronics designs have to deal with. With an all DC system there would be other issues such as power filtering and voltage stability… no hum though!
  4. Shrinking power supplies
    • As devices continue to get smaller, the power supplies are reaching a lower limit. 1.8V is currently the lower end of DC supplies for microchips. This allows for less power consumption, as is governed by the formula P = V² * f * C (where P = power, V = voltage, F = frequency and C = capacitance). Have you ever noticed how they stopped increasing the frequency of microchips past a certain point (~3.5 GHz)? Yeah, it was because they started getting so hot you could fry eggs on the processors. Plus mobile processors became much more prevalent. As more and more devices go towards these lower voltages, there will be less need for conversion (or alternately, more need for AC-DC converters if wall power remains as AC).

So the final question comes back to that posed by the giants of the 19th century: AC or DC power? Well, really the answer will be both, as history has shown. Perhaps over time we’ll see a shift back towards DC power as devices continue to shrink and manufacturers don’t want to include bulky transformers or as people hopefully begin producing their own power at home; but one thing that is for certain is this battle will continue raging for a long time and hopefully we’ll help renewable energy find it’s place.

I welcome any and all comments on this idea and if you know of something being developed similarly, please let me know!

“If I have been able to see further than others, it is because I have stood on the shoulders of giants.” ~Sir Isaac Newton