Categories
Economics Engineering Life Politics Renewable Energy

Welcome President Obama! Now let’s get crackin’ on renewable energy.

I wrote last week about Barack Obama further laying out his plans for renewable energy. He states in that video that he plans to invest $15 Billion or more in renewable energy each year. My question is, what can we start doing now? In order for him and the renewable energy community to hit the ground running on Jan 20th, we need to start planning some actions for the new administrations (with or without funding).

  1. Education — Without a new crop of able young engineers, we won’t get far. So how do you get involved in helping to make this a reality? Follow my volunteer idea and go to middle- and high-schools and share what it’s like to be an engineer with young people. Even better, I recently found out that I was right in thinking I was not original…there are many programs in place to allow engineers to easily reach out to their communities. The one I am currently considering is the New Faces of Engineering Road Show, hosted by the Cleveland Engineering Society. They travel to schools and promote engineering and science to young students, basically the exact thing I wanted to do.
  2. Conserve — The best way that individuals can help on a daily basis is to conserve, in general. Use less utilities (turn off your lights, turn down your heat), recycle your recyclables, carpool to work
  3. Stay involved — This year has shown young people actually can make a difference in elections and in general. This is due to the extreme influence of social media and how it connects people online and throughout the world. Now use that power to go out and influence individuals and corporations that a green economy will benefit all Americans (and the world).
  4. Consider alternative and renewable energiesBlack silicon or not, photovoltaic (PV) cells are still expensive. However, there are simpler methods, such as corn stoves, which have lower environmental impact and are definitely renewable year after year.
  5. Keep them honest — No matter how good their stump speeches are nor how honest they may seem, absolute power corrupts absolutely. While the checks and balances were put in place by our forefathers to keep our branches of government watching one another, the true power in oversight will come from civilian oversight. This has been further enabled by the internet in recent years and we must insist that our newly elected government officials do not take advantage of their positions for personal or nepotistic gain.
  6. Join the fight — Sure, there will be more political battles, notably with oil barons not wanting to relinquish their grasp on easy profits; but the real battle is with innovation and design challenges. Use online resources to go out and educate yourself on analog electronics. The biggest challenges will be won by the groups with the most resources. If we want a future filled with solar and wind generated power, go out and learn how to make that a reality by studying the basics.
  7. Start something — Been studying this stuff for so long that you think you have a great idea on improving an existing system (the power grid, anyone?) or developing a disruptive renewable energy technology? Go for it. In order for the green revolution to begin, America (and the rest of the world) needs entrepreneurs to step up to the plate and take risks in order to develop these emerging technologies. Do you prefer the less technical side of engineering? Pair up with the entrepreneurs. Technically minded people are just as important to take the time to introduce the new technology to the rest of the world.

Good luck President Obama. You have a huge challenge ahead of you, a huge wreckage behind you and a huge nation standing and waiting for you to wave the green flag. Let’s all try and toe the line as soon as we can.

Categories
Analog Electronics Economics Politics Renewable Energy

Barack Obama Further Lays Out Renewable Energy Plan

I take a personal interest in Barack Obama‘s new plan to increase investment in renewable energy technologies, as I think and hope my long-term plan of working on renewable energies will come to fruition.


Skip to 9:38 to hear about his plans for renewable energy

I don’t seek to point out any political messages other than to focus on his determination to make renewables a viable part of the American economy, much like Thomas Friedman points out in Hot, Flat & Crowded. A green revolution or economy will help to return America as an arbiter of international issues by once again showing our leadership and innovation abilities (not to mention our economic strength). While I will point out that John McCain has also shown some initiatives for renewable energy (not to mention he does not believe that drilling for oil is the only solution), I feel that his focus on nuclear as the only true long term solution in his administration would not put enough money into the hands of people that will drive the “green revolution”. Given the possibility of recession in this country (or is it already here?), I believe that direct government investment in renewables will help to jump start the economy by driving job growth. And it won’t just come from the presidential administration either; people in the house and senate all need to push these new green energy agendas to really allow for new legislation. Great examples of this are Alice Kryzan, running for the 26th congressional district in New York and Dan Maffei who is running for the  25th district, also in New York.

Probably the point that I would like to point out most in this video is his call upon the American people to reduce their consumption AND take personal responsibility in their lives (i.e. childhood education). Sure, we could use our innovative techniques to create energy at the cost of the environment ad nauseum. But why not instead work on power saving techniques? Why not inflate your car tires to increase gas mileage, instead of pushing for faster ramp ups of offshore drilling? Why not tell people to turn off their lights, recycle their garbage, stop watering their lawns and driving gas-guzzling cars? Because it’s tough telling people that stuff. It’s not going to work at first, but it will over time, and that’s why I thought this was a good video.

I always welcome comments on renewable energy, but given the touchiness of politics, please be extra gentle when commenting. What do you think of the renewable energy plan? Is it a pipe dream? Do you think there are pieces that both candidates are missing?

Categories
Economics Life Politics Renewable Energy

The Simple Ways to Help

I remember reading a book called “50 Simple Things Kids Can Do To Save The Earth” when I was about 10. It was a really great book and had some interesting conservation ideas. Then for my teenage years and beyond, conservation definitely took a backseat because no one was talking about it and teenagers think about other stuff, apparently. But now, writing about energy conservation and renewable energy more regularly, I’ve looked around and seen some really dumb things that I do in my everyday life that consume a lot of resources and energy.

The thing is, it’s not just about turning off lights when you leave a room or figuring out how much power your TV is wasting when it’s “off” (although these things are important). It’s also about reviewing products we use everyday and looking beyond what the final product is; what kind of resources were required to get that product to us and how much energy and resources did it take to make it?

Some of the simplest things I’ve noticed have been the disposable products I use. It was brought into sharp relief when I read Duncan Drennan’s post on traveling to the US and he pointed out how much stuff Americans throw away. Here’s some of the steps I’ve taken to reduce my daily waste; while most of them revolve around eating and work, it helps me sleep at night knowing I’m not piling up quite as much trash.

  1. Bring in a spoon to work — Stupid, right? But every time I went to grab a plastic fork and spoon at work to eat my lunch, I ended up throwing them away. I mean, that’s what they’re made for, right? But why not bring in a reusable piece of “equipment” (aka. spoon)? This is also a big problem in China, as throwaway chopsticks are becoming a larger and larger contributor to de-forestation.
  2. Get a reusable lunch bag and use Tupperware — Again with the food, but I’m amazed at how many times I would end up throwing stuff away…simply because it’s disposable. I switched out the plastic bag holding my lunch and the tiny bags holding my sandwiches and other items because there are other good options. I also think about how much plastic ends up in the ocean and how DISGUSTING that is, and it really makes me want to cut back on the plastic I dispose.
  3. Stopped drinking milk — This one was accidental, as we never have milk in our house anymore. However, it takes over 250 gallons of water to make just one quart of milk, as told by Dean Kamen. I think that there are better things that can be done with those kinds of resources and my body doesn’t particularly like milk anyway.
  4. Recycling — Trash day is amazing for me. When we get up early to walk the dog, I have a really great opportunity to scope out other peoples’ junk. Wow. I know that I don’t have kids who eat non-stop or anything, but when I see other peoples’ 4 overflowing trash cans and no recycling versus our half filled trash cans and some cans, it makes me wonder. I like to give people the benefit of the doubt that they don’t know about recycling in our area, but that’s a weak argument. I’m not saying we’re better than other people, just that public knowledge can help with conservation.
  5. Coffee — It makes the work world run, right? Well anytime I bought a cuppa at our company cafe, I’d buy the paper cup, use the stirrer, dump it all in my travel mug and then throw everything away. Stupid, stupid, stupid. I negotiated with the lunch ladies to use my cup in the first place, only to find out this was OK all along. Sometimes you just gotta ask.
  6. Turn off the computer — Even in power save mode, leaving a computer on overnight can be costly. Now think about a high rise in NYC or somewhere else and all the needless energy burning there. This comes down to electricity being cheap and therefore employers not pushing their employees to conserve. If we see prices spike, expect managers to ask you to shutdown the ol’ PC at night. Even if we can’t access our files all night long (wee!), Mother Nature will appreciate whatever extra coal plant output (electricity and pollution) we save due to turning the computer off.
  7. Eating less meat — Now that I think of it, cows can be pretty detrimental as consumers — from the water they consume, the amount of feed they require and the gas they emit. Eating less meat is not only a good thing economically and ecologically, it may become a necessity as the possibility of recession looms and more and more of China and India enter the middle class.

Of course, these are stupidly simple things people can do to help out. And it’s not always about saving the world. Using one more or less napkin at lunch? Nah, it won’t hurt the planet that much. But take 6 billion people using one extra napkin a day for even a year and you start seeing forests disappear for no good reason. I’m not one to harp on conservation because I understand that some consumption is going to happen, whether we like it or not. This blog is also about analog electronics and renewable energy, not conservation, so I don’t want to stray too far from that by giving regular tips on how to save the world. However, it is a pressing issue, both in energy consumption the world over and good conscience about making waste unnecessarily. Try your best to reduce your overall consumption today and leave any additional ideas you have in the comments.

Categories
Economics Renewable Energy

The Renewable Energy Singularity

It’s gonna happen. Some day.

Some day, we (as the human race) will reach a point–or a singularity–where it will be more economically viable to create renewable energy than to harvest oil or coal out of the ground; there won’t be any going back. We started toeing that line a few months ago. Oil just about crossed the $150 mark before dropping way back, thanks to the possibility of recession. Now that we’re back into cheap oil land, we will probably suffer a setback on developing newer more efficient energy solutions (not even necessarily renewable ones). But once we cross that threshold where renewable energy is cheaper than hydrocarbon based energy, the world can only change for the better.

Let’s look at things that will accelerate the pace at which we (are forced to) develop new energy technologies:

  1. We run out of oil — Whoops! Can that really happen? You’re darn skippy it can happen. And will happen, if growth continues as it had for the past few years. China and India are waking up as new middle class citizens and they are thirsty for oil. There were only so many dinosaurs and other critters that are now our oil supplies.
  2. The oil that is left is REALLY hard to get to — Recently Cuba found out they have one of the largest oil reserves in the world just off their coast. Too bad it’s a mile or more under the ocean. That’s a lot of water to get through just to get at the oil. It’s even tougher if you have primitive oil companies trying to get at that oil. If the price of oil is high enough there’s likely to be someone crazy enough to go get it, but that might raise the price even more.
  3. The oil and coal the US imports is no longer available — The main reason would be “conflict” a.k.a. War. We make Iran or other friends of OPEC angry enough and they might decide to stop sending us 55 gallon drums of crude (that’s just how they measure it…not ship it, right?).
  4. We can’t afford it anymore — Since we’ve been sending China our money for a long time, they are sitting on some significantly larger piles of cash (in US dollars, thank you very much). If it comes down to an eBay style bidding war, the bigger pile is going to win. Even bidding at the last moment won’t help!

OK, so we’ve decided what might get us into this mess. But what else can get us out of this mess? It’s pretty clear that the next US presidential administration will have some serious sway over how renewable energies are governed and encouraged. If they read, or better yet employ the author of “Hot, Flat and Crowded” — Thomas Friedman, then they will have a level headed economist with some great ideas on their side. More important than one man or even one administration is a multi-point plan of attack for reducing the cost of renewable energy.

Remember, the thing we’re concentrating on is that point where it’s more cost efficient to harvest renewable sources than to dig up carbon based sources. In theory, this makes a lot of sense. Sunshine is definitely free, even if it is harder to come by in the great north. Wind is prevalent just about everywhere, just look at Kansas. But until the infrastructure and the methods are in place, all of these elements won’t contribute to our renewable energy solution, they will just sit useless until everybody jumps on board. Let’s look at a list of hurdles we will have to pass in order to make renewable energy, and more importantly energy independence, a reality:

  1. Efficiently storing energy– From what I’ve seen so far, this will probably be done by splitting H20 into hydrogen and oxygen. While I don’t like the idea of liquid or gaseous hydrogen sitting in my car, basement, etc, I would hope material technologies catch up so catastrophic events aren’t as often as we might think. Unless some game changing technology such as batteries or super capacitors comes and proves it can store energy better than electrolysis, then splitting molecules will be the way to go.
  2. A newer and better power grid — This is one whopper of a problem. You know how you hate going to Best Buy to purchase a 10 ft length of cable because the one coming out of your wall won’t reach your TV? You know how they totally overcharge you because those are their high margin products? Well even if there was NO margin, imagine how expensive it would be to run one wire all the way across the United States. Now imagine criss-crossing those wires across every town and city across the United States. Oh and those really huge amounts of cable? Well, let’s make them out of copper, which is currently at some all time price highs right now. A better routed and controlled power grid is a good first step to increasing the efficiency of power transport. But until we as a country begin to revamp the aging infrastructure of this country, renewable energy will not be a reality for locally generated power sold to the masses or at a central power station system where excess power can be put on the grid at any time it is available.
  3. Bringing in the big boys — Like it or not, the big energy companies need to be a part of it. Until BP or Chevron can continue to make the profits they are making with oil, then there will be problems.  I’m not saying that the king cannot be dethroned (ahem, GM), but I think that if the big boys are in on the action, they will be less likely to lobby the government for oil and maybe even turn their interest towards lobbying for renewables. Who wouldn’t want to get free energy (solar)? All you do is plop down the infrastructure and collect those deliciously free solar rays.  On another note about the big boys, I am happy to say that they have started recognizing some of the potential in renewable energy, although it is unlikely that they will be turning in their oil rigs for solar panels anytime in the next few years. Oil rigs are expensive!
  4. Progressive tax credit reforms — Again, this is likely to hinge on the upcoming election and ensuing presidency but in the event that point 3 does not go through and oil companies continue to lobby for hydrocarbon use, tax credits will be needed so individuals are encouraged to buy their own wind, solar and geothermal systems.  Sure, the lowered costs help, but until there is governmental push, it’ll be slower adoption on the part of big business.
  5. Finding replacements for current solutions — I once visited the GE Aviation facility in Cincinnati and I can tell you, that facility is HUGE. It must be miles of offices and test bays completely dedicated to producing engines that run on jet fuel. Until THEY decide to switch over and try new methods of propulsion, having an abundance of hydrogen might not do them (or us) any good. The end products (in this case engines) require jet fuel and until they require something other than jet fuel (and therefore drive the demand down and the impetus to go find and sell more of it down), then the cost of renewables will remain high by association (because there will be less demand for it).

As much as we wish it was, making cheaper solar panels isn’t the only solution to reducing costs of renewable energy. There are many different aspects that feed into making renewable energy a final solution for the human race. If you can think of more milestones we’ll have to reach before this vision becomes a reality, please post them in the comments.

Categories
Blogging Economics Music Politics Renewable Energy

“Hot, Flat and Crowded” By Thomas Friedman — A short review

I love public libraries because it’s like having Amazon.com minus the pesky notion of paying for a book. However, the downside is you don’t get to keep what you’re reading–especially if it is a popular book that other people want before you can renew it. As such, I’m going to review what I’ve read of this book so far, because it’s just that good.

For background, Thomas Friedman also wrote “The World is Flat”, a book detailing how the economy and the world has changed since the September 11th attacks, both good and bad. In that book (written in 2005) he details the benefits of outsourcing and globalization and actually downplays the notion of globalization as an enemy, instead framing it as an opportunity that requires a competitive nature in workers and corporations. While that book was written before there was the possibility of recession, the book explains the rapid growth that is occurring overseas which will likely collapse along with the credit markets. I highly suggest reading that book if you have not, it is a great introduction into Friedman’s writings and is a good preface for the book reviewed here.

Onto the main event. Let’s decode the title of this book:

  • Hot — Not too hard to figure this one out. Global warming is not just a potential threat anymore, it’s real, it’s dangerous and it’s here to stay (or is it?)
  • Flat — See the previous paragraph. The world is quickly trying to elevate more people into the middle class than ever before. This is putting a serious strain on all resources of the planet, including the atmosphere.
  • Crowded — Barring a major war, outbreak or famine, the world population keeps on growing. Add to the mix better drugs, a higher focus on health and longer life expectancies, the people that are here will probably stick around too. Overpopulation is yet another drain and strain on the planet’s resources, multiplicatively so if those people are in the middle class.

Of these, I would put forth that only the “hot” portion has any solution, and at that, reduced consumption and switching to renewable energy will likely only go as far as retaining the current temperature of the earth. For the “flat” and “crowded” parts, the best case scenario is that we find ways to accommodate more and more people entering the middle class and the world in general by changing our perceptions of allowable consumption in the middle class (and any class for that matter). Most notably, Americans who have become accustomed to a particularly wasteful way of life (as chronicled by Duncan)may have to re-assess how they consume products; while it would be nice to think we will do this with conservation in mind, more realistically we will be forced to do this because of the laws of supply and demand are going to make previously cheap products much more expensive.

How do we do it, you ask? With a “green revolution”. This means an economy that is based around locally produced energy that is both renewable and environmentally friendly. Even though it sounds a bit new-agey to conjecture that renewable energy can save the world, it really starts to make sense when you look at current world issues. Here are some problems that a green economy can fix:

  1. Energy supply and demand — The best ways to bring down energy costs is to either flood the market with it (energy) or tell the energy producers you don’t need it. Since the world as a whole will not likely give up our digital and analog electronic gadgets anytime soon and our energy usage will likely increase, it would behoove us to begin making cheap and renewable energy. Since oil doesn’t seem to be an option as cheap energy anymore, we should probably start looking at new exciting options, like solar cells made out of black silicon.
  2. Petropolitics — If we don’t end up going out and figuring out how to make renewable energy, we’ll continue shipping boatloads of money to countries that hate us. Like I had written about these oil barons before, why not hit them where it hurts? In the wallet.
  3. Climate Change — Al Gore knows it and told a lot of the world. There is undeniable climate change happening every day we continue to dump greenhouse gases into the atmosphere. Reduce coal and oil usage and the amount we dump into the air will go down.
  4. Energy Poverty — Without energy, it’s hard to do a lot of things. Most of us would go check into a hotel if the power went out for more than a week. However, one third of the world lives in energy poverty, meaning they cannot even come close to pulling themselves out of monetary poverty; health standards are proven to drop dramatically when people live this way.
  5. Biodiversity Loss — Human consumption of natural resources is threatening damn near every species on the planet, up to and including humans. If we don’t want to have only cockroaches and squirrels running around a polluted planet with us, we need to set up more sanctuaries and reduce

I unfortunately didn’t get to read about all of Friedman’s ideas, but plan to read more as I get my own copy of this book. (More of the basis of his ideas can be read from his entries in the NY Times and Foreign Policy magazine)

I will leave you with one of my favorite statistics and quotes that Friedman puts in the (beginning of the) book; Moisés Naím also writes in Foreign Policy about the Chinese and Indian middle class that is emerging and how “the total population of the planet will increase by about 1 billion people in the next 12 years, [but] the ranks of the middle class will swell by as many as 1.8 billion”. Just think about that for a second. 1.8 BILLION more people leaving the lights on, eating cheeseburgers, driving SUVs and doing everything else they’ve been sold as “the American Dream” (or at least way of life). They can’t be stopped and they are constantly told through advertising that they deserve whatever they want. Something has to change, and fast (besides the economy). I want to find solutions for new renewable energy and I hope you do too; but a quick thing that will help everyone is if you switch those lights off at home when you’re not using them, so be sure to do that too.

Scared by all of this? That wasn’t the point of this post, but it scares the heck out of me too. Go out and read this book and leave some comments about what you think about the future of the world.

Categories
Renewable Energy

Is black silicon the way to make cheaper solar power?

I came across an article today talking about how black silicon will revolutionize solar power. The idea developed at Harvard (and now at a company called SiOnyx) is basically to blast the surface of a silicon wafer with a high intensity laser for a very short interval. This short time “melts” the silicon and when it comes back together it has a structure allows the structure of the silicon to absorb more light. They also utilize a new type of doping, (doping is insertion of low quantities of specific elements, such as phosphorus, into silicon in order to change the properties of the silicon. Depending on the type of dopant the silicon may want to release an electron or absorb one); the laser process likely allows better penetration of the dopants into the silicon, which usually are accelerated into the silicon with HUGE magnets. There aren’t specifics about the entire process, but as you can see in the picture below, the silicon seems to stretch upwards creating cones of silicon. I would guess that the process is similar to carbon nano-tubes where they also use a laser to blast the carbon. It also makes sense that the process would work for silicon given the similar structure between carbon and silicon.

Courtesy of SiOnyx

Again, I don’t know the specifics of how the final product works better, but my guess would be that the cones are much better and capturing light, due to the higher surface area. When the light hits these more sensitive nodules, the energy “knocks” an electron loose (just as in regular PV cells), which then contributes to the overall current coming from the cell. Also of note is how the dopants shift the sensitivity of the silicon to a lower wavelength. In this case, it is shifting it down into the red and infrared regions of the spectrum, which allows for more energy to be absorbed by silicon, as opposed to reflected. This also is the namesake characteristic of this technology, because in theory “black” silicon would absorb all light (as opposed to a theoretically worthless “white” silicon that would reflect all light). The higher amount of cells hit by light (due to more surface area) and the greater sensitivity to low wavelength light such as infrared (which our bodies interpret as “heat”) gives this new silicon a much higher overall absorption and translation into usable electrical energy.

I like this idea because it lets existing solar facilities be transformed easily into solar cell facilities. This new capacity could then be absorbed by local micro-factories, putting the solar arrays together and hopefully driving the cost to the consumer down. As more and more fabrication facilities are shut down due to a possible recession, they could quickly be modified to start outputting less complicated solar cells in higher volumes. The SiOnyx equipment would provide the final processing necessary to have the higher efficiency panels.

I only know what I have read online, but I like what I have seen thus far (plus I tend to trust researchers from Harvard more than just some schlub off the street). It seems feasible in the short term and has much broader appeal and use than ideas like “dancing to save the world“. Check out the above article and if you have any thoughts, please leave them in the comments.

Categories
Analog Electronics Digital Electronics Engineering Renewable Energy

Power Saving Techniques

Two things will make people want to use less power: not giving them much to start with and making it prohibitively expensive. Both of these scenarios seem to be dovetailing right now with the shrinking of many devices and energy becoming an ever more expensive and sought after.

Sure, there are people out there trying to create and harvest more energy. Either through more drilling, more wars, more acquisitions or new technologies. But eventually, people start to question why we are using so much energy in the first place. Instead of running device batteries into the ground quickly, why not draw less current? Instead of putting a bigger more expensive battery on a device in the first place, why not come up with new techniques to conserve power? Instead of paying high prices for energy and polluting the environment, why not conserve energy in our devices so that we don’t need as much energy overall?

Here are some of the methods that designers use in increasing numbers to reduce power consumption

  1. New chips — The basic idea is the same for any chip: Try and have the same or better performance of today’s chips with incrementally less power.  Most often, the best way to do so is to reduce the number of electrons it takes to store a value or drive another circuit (or whatever your task may be). However, there is a lower limit to how few electrons are required to complete a task (one, duh). How do we get less electrons doing these tasks?
    • Smaller geometries — Moore’s law tells us that process technologies will allow a doubling of technological ability every 18 months. This could even be a faster rate than previously thought, according to one of my favorite futurists, Ray Kurzweil. As fabrication facilities race to leapfrog one another to the next smallest process technology, they also help to reduce the number of electrons running through a device. If you look at the path of an electron along a trace on a microchip or op amp, it resembles a “tunnel” that electrons flow through. As process technologies get smaller and smaller (32 nm, anyone?) there is less room for electrons to flow through and thus, less power is used.
    • New materials — If you have less electrons flowing through a semiconductor, that means the total current flowing through the semiconductor is lower (current is defined as the number of electrons [measured in charge] flowing past a point for a period of time i.e. Coulombs per second). While less current can also mean less noise (fewer electrons bumping into other molecules and heating them up), it also means that if there is more resistance in a connection between two points, it will be harder for the electrons to travel that distance. As such, semiconductors are now made with new doping compounds (the molecules they force into silicon) or they forgo the silicon and try entirely new materials (Gallium Arsenide is a good example). These new materials allow for more efficient transistors and lower power consumption in devices.
    • New architectures — National Semiconductor has been pushing a new, more consistent power metric called “PowerWise“; it is targeted towards the mobile market and the “green revolution”. While this is a bit of a marketing move, it also helps to highlight their most efficient products across the different product types (LDOs vs Switching Regulators vs Op amps, etc).  Some of these newer, higher effeciency products use new architectures, as in the case of some of the switching regulators
    • Lower supply voltages — This one affects me on a more regular basis. Sure, the lower potential across a junction will drive less current in the off state (Iq) and will have less noise due to lower potentials; but this also throws a wrench in the works if you’re trying to find parts that will drive some significant currents or have any kind of large allowable input voltage ranges to a circuit without bootstrapping the supplies.
  2. PWM — Pulse Width Modulation (or PWM) is an easy way to reduce power in LED lighting situations. The idea is based off the fact that the human eye cannot determine the continuity of a light signal if it is below a certain frequency; instead, pulsing an LED on and off quickly will translate to the human eye as a lower intensity than an LED lit continuously. This idea is used regularly in portable electronics to dim the “backlight” of a laptop screen, cell phone, GPS device, etc. The duty cycle is the time that a device is powered divided by the total time it is on; usually it is given as a percentage. So if an LED is lit for 1 seconds and then off for 3 seconds (1 second on divided by 4 seconds total), the duty cycle is 25. In that example, the LED would appear to be one quarter as bright as a fully powered LED, but will also save a little less than 75% of the power normally required. The power saved can never be the entire difference between the normal case and the PWM case because some amount of power is required in order to switch between the on and off states.
  3. Microcontroller/Code Improvements — One of my favorite new blogs, written by Rick Zarr of National Semiconductor, has two great posts about the energy content of software. In it, he points out some of the ways that software can intelligently shut down portions of the code in order to reduce redundant processes and save on processing power. However, the points that I really like are the ones  he makes about making the simplest possible solution that will still get the job done well. This could mean cutting out some software libraries that were easier to just include in a project or learning how to properly construct a software project. Other techniques could be a combination of better coding and PWM: putting a device to “sleep” for a set period of time only to have it wake up at set intervals to see if it is needed.
  4. Going Analog — One last great point that Rick makes in his first post about energy saving techniques in software actually relates more to hardware. Instead of using a DSP, an ADC and some coded FIR filters, why not pull the filter back into the analog domain? Sure, it’s a little more difficult at the beginning but there won’t be any quantization errors (the error that comes from approximating a real signal with a digital signal). Analog engineers can do the same task with an active filter as digital engineers can do with a digital filter for many simpler applications. With the lower part count and the lower strain on the system of not converting a signal from analog to digital and back again, designers can save some significant power.

The final solution to our energy problems will be a combination of power saving techniques and new renewable energy sources. With some of the above techniques, designers will be able to use smaller batteries that allow longer usage times and have less of an impact on the environment. Please feel free to leave comments or any other power saving techniques you have heard of in the comments!

Categories
Life Renewable Energy

This may sound a little corny…

Ah summertime. What a great time of year. There are tons of things to do, but none match the splendor and diversity of a county fair…especially in middle of nowhere Ohio. Between eating pizza subs, watching horses pull stuff and admiring the great bounty of mullets that only rural areas could give us (“Strong crop of mullets on the back 40 this year, Pa!”), I found something genuinely interesting.

In a cramped show trailer, I happened upon a nice older gentleman whom I’ll call Hank (cotton candy causes memory loss). He was selling a range of products from CornStoves.com, which is a distributor for a range of pellet stoves. Neither the website nor the product is particularly flashy; basically there is a thermostat that controls a hopper, which can hold wood pellets, or sometimes grain. When it gets below the set temperature, the thermostat kicks on and releases a few of the tiny pellets into the already raging, but compact fire (500°F and up in those tiny piles). This method allows for only using the amount of energy needed and not much more. Depending on whether the system is a boiler or a furnace, the pile of burning pellets then heats liquid or air respectively and then goes through a heat exchanger. I immediately asked Hank if my house would smell like popcorn, but he calmly explained that the heat exchanger would not usually allow that. He was nice enough to humor me though, and told me that it might smell like popcorn outside my house. He also told me that a retrofit system for an existing 1500 sq. ft. house would cost about $5000 or so. It would tie into an existing furnace’s ducts and then kick on instead of the regular furnace (with the option to use the original furnace). I though this was a pretty interesting idea.

So why now? Well, energy prices don’t really seem to be going back down anytime soon (even if oil prices are falling temporarily). And while corn prices seem high at the moment, you can always plant more corn next year…you can’t make more oil. Also, I tend to think that farmers are over planting corn this year because of the high prices. Who wouldn’t want to get close to double what they were getting a few years ago? If corn AND oil are both high, these systems have the benefit of being versatile; they can use any range of bio-fuels, from wheat to rye to recycled paper pellets. The most commonly found feul is compressed wood pellets, which are made from sawdust at mills and elsewhere. All will have varying energy densities (which will change how much heat an individual pellet will output), but the pricing will often make up for the differences. Hank also told me that with a boiler, the cost would be about 60% less to heat a home (because heating oil will be higher this winter than natural gas). It would be about 40% cheaper with a furnace. Disclaimer: These facts are all from Hank, the salesman. Actual results may vary, but he seemed pretty genuine.

So why this solution as opposed to something else? It’s simple, stupid. Really simple, so much so that these systems have been around for a while (think wood burning stoves, but with pellets). But now there is a renewed focus on this solution. Sure there are geothermal house heating solutions and communities with steam pipes going to houses and solar thermal towers and on and on. For most people though, those things are not an option for an existing house in an existing neighborhood. Sometimes there aren’t any other resources that can be harvested naturally (wind, sun, heat from the earth, etc), so people have to buy fuel. It’s a reality we’ll all have to face. There are downsides, as in any issue: you have to clean the system weekly, it’s not carbon neutral, it’s dependent on prices of fuel sources, it burns food that could feed some people (not feed corn, but some of the other types of things). I’m not saying you should go out an buy one, that’s Hank’s job to convince you. But it’s another way to reduce dependence on foreign oil and maybe help some local farmers too.

Categories
Analog Electronics Politics Renewable Energy Supply Chain

Solar Automation and Micro-Factories

I have a friend who alerted me to a company out in New Mexico known as Solar Automation. They don’t make solar panels; rather, they make the equipment to make solar panel arrays. However, what I find most intriguing about the company is their concept of Micro-Factories. In the case of Solar Automation, the basic idea is that a small team of people are capable of creating solar arrays by soldering the tiny wires with non-lead solder. This same concept could be expanded to many other applications, including mechanical or auto assembly, textiles, food preparation (already done at caterers, really).

Although it exists on a slightly larger scale, China epitomizes the Micro-Factory model. They have large labor pools using simple equipment to make incrementally more complex equipment. One example might be a board house that hand assembles and solders through-hole part boards. This could instead be done in a large facility with automation on expensive equipment. However, the cost for the equipment would likely mandate a large overall throughput for the factory in order to justify the cost of the equipment. Conversely, a smaller hand soldering operation could easily scale the number of people required to make an order of boards. As for energy savings, there can be higher efficiency with a laborer using a low wattage soldering iron as compared to heating lamps or continuously heating a wave solder machine.

The pivotal point in this argument is whether or not the end product requires increasing complexity in the machines that construct it. Solar is a good example. The panels themselves are not particularly complex, mostly they are tons and tons of PN junctions that convert incident light into flowing electrons. However, the chemicals and the semiconductor processing equipment is very complex.

So what are the benefits of Micro-Factories?

  1. Local workforce – With the exception of a privileged few (non-whiners), no one will contend that the US and the world economy is hitting some tough times. Local jobs are outsourced or cut outright. Mom and pop shop workers are now greeters at WalMart. Why not instead allow lower education workers have a job creating something useful for society and the environment, rather than peddling trinkets made 6000 miles away? Added bonus: Your workers do not have to travel from far away to work, thereby cutting down on costs and emissions.
  2. Simple training – Training is not cheap. If you ask people at Samsung, I was training for roughly a year and a half to do my job (and promptly left for a new one). It takes times to get into the swing of things at companies, no matter the task. Why not make the task simpler? The Solar Automation takes a complicated end process and allows simple training to quickly begin.
  3. Built in quality control (eyes) – While this would hinge on the enthusiasm of the workers (and therefore dependent on myriad other factors), it’s a fact that most computers do not notice something innately wrong with a process. Most people will notice if a solar panel is discolored or if a wire is hanging off where it’s supposed to be connected. Until the day when computers are smarter than humans (and cheaper), people will implement a natural form of quality control.

What are the drawbacks, you ask?

  1. If you give a mouse a cookie (cutter job), he’s going to want benefits – My own views about benefits and healthcare aside, it’s a fact that people expect some form of benefits, most easily represented in business as overhead. It expands beyond healthcare and such (think tables and chairs and other things that people expect from jobs), so you might have to label the job as “an alternative workplace” where compensation is higher (in the event you don’t want to/have to provide benefits). Doesn’t mean you can’t have a productive workplace though.
  2. In the solar example, there are still high material costs (the actual solar cells), so the margins will be squeezed. In general, assembly jobs are meant to be high volume, low margin endeavors, so there are risks when material costs rise; doubly so if your revenues are stagnant (because of contracts or otherwise).
  3. Sometimes it’s still cheaper to ship repetitive jobs overseas or automate a process. That’s all there is to it.

Micro-Factories could be a great way to increase employment, mobilize a stagnant workforce and help cut down on emmissions. I would highly suggest you check out the Solar Automation page and leave comments on other places you have seen similar ideas implemented.

Categories
Analog Electronics Politics Renewable Energy

Stealing stars and leaving the Barons in the dust

I recently had a high school friend visit and while watching the Olympics and having some beers, conversation turned to China (and the rest of the world). I know, I know, I’ve recently talked about the Olympics and China and such; But this is different. The conversation moved to energy and how it relates to national security, which I also have read about recently in a trade journal. Basically he brought up the astute point that renewable energy needs to be our number one priority in the coming years. We’re not talking 20 or 30 years…we’re talking 2 or 3. Really, it’s that important.

If you think about it, it makes perfect sense. Let’s say America reduces its energy dependence and busts its hump to get renewable energy contributing to say 40% of the country’s need (imagine a breakthrough that would allow this). What happens next? Well, if it was overnight (which it wouldn’t be), oil demand and prices would more than likely fall overnight too. Not to worry, I’m sure somewhere along the way that the demand would be filled by large countries that manufacture goods and want some newly cheap energy. But what about (the) US? In succession, we’d be able to say “Goodbye! No Thanks! Don’t Need it anymore!” to: Iraq…Iran….Russia….Venezuela….and China (though we probably wouldn’t with China, they make our stuff, right?). Almost all of the conflicts the US has with other countries center around oil! I would imagine it’s not going to stop with these countries either. Oil will become the driving force behind global conflicts for years to come, followed only by the fight for potable water. So why not go over the oil barons’ heads and make our own energy and let the wind and sun give us all the power for free?

40% of energy coming from renewable energy? Does the US have the brainpower to achieve that? No, not unless just about every scientist and engineer was capable of dropping what they’re doing and shift all their focus to working on energy. But there’s tons of smart scientists and engineers all over the world. What a break! In fact, there are engineers already doing a lot of this renewable energy work already. So maybe we could achieve two things here…first, the US would get scientists to help develop energy solutions that would allow us to ignore the tyrants of the world; second, the US would continue to maintain our most important resource going to the future: intellectual capital.

For the past 100 years, the US has been a leader in technology because of its innovators. These best and brightest minds created everything from electronic building blocks to the computers in which they were utilized. And now we’ve seen not only jobs going overseas, but a lot of the best minds are popping up outside this country too. Not only that, a lot of the top minds are coming to the US to study and then following jobs home to their native countries. So another solution for the benevolent (or otherwise) forces in the world: lure them to the United States and claim them as our own. While intellectual capital may have been one of our greatest resources that is arguably losing ground to the rest of the world, the US still has something that many other countries do not. What other countries have Hollywood, New York City, Chicago, LA, National parks bigger than certain countries and so on and so forth? Where do people want to move for jobs and stay and live and raise families? I think that the US needs to utilize the drawing power of our entire country, our availability of opportunities and our lifestyles (whether people agree with the decadence of western culture or not).

The future of the world in regards to energy is very uncertain; the US will remain a world power only if we are able to recruit the best minds, keep them here and have them help to create a world run on renewable energy.